Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2015-Sep

Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.).

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Wei Wang
Peng Zhao
Xue-Mei Zhou
Han-Xian Xiong
Meng-Xiang Sun

Palavras-chave

Resumo

UNASSIGNED

11 Cystatin genes in rice were identified, and their expression patterns were comprehensively analyzed, which reveals multiple roles in both seed development and plant response to environmental variations. Cystatin is a group of small proteins and known to inhibit the activities of cysteine proteases in the papain C1A and legumain C13 peptidase families in plants. Cystatin family genes have only been well characterized recently in a few plant species such as Hordeum vulgare and Nicotiana tabacum, which show their critical roles in programmed cell death and responses to biotic stresses. Up to now, little is known about cystatin family genes and their roles in Oryza sativa, a model plant for cereal biology study. Here, we identified 11 cystatin genes in rice genome. Comprehensive expression profile analysis reveals that cystatin family genes in rice display diverse expression pattern. They are temporally regulated at different developmental stages during the process of seed production and germination. Our experiments also reveal that the majority of cystatin genes are responsive to plant hormones and different environmental cues including cold, drought and other abiotic stresses, while some others are very stable under different stresses, indicating their fundamental roles in normal plant development. In addition, their distribution in rice chromosomes and their evolutionary relation to the members of Cystatin family in A. thaliana and N. tabacum have also been analyzed. These works suggest multiple roles of cystatin family genes in both seed development and plant response to environmental variations.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge