Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Traffic 2018-Nov

Genome-wide screening of budding yeast with honokiol to associate mitochondrial function with lipid metabolism.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Xiaolong Zhu
Juan Cai
Fan Zhou
Zulin Wu
Dan Li
Youbin Li
Zhiping Xie
Yiting Zhou
Yongheng Liang

Palavras-chave

Resumo

Honokiol (HNK), an important medicinal component of Magnolia officinalis, is reported to possess pharmacological activities against a variety of diseases. However, the molecular mechanisms of HNK medicinal functions are not fully clear. To systematically study the mechanisms of HNK action, we screened a yeast mutant library based on the conserved nature of its genes among eukaryotes. We identified genes associated with increased resistance or sensitivity to HNK after mutation. After functional classification of these genes, we found that most HNK-resistant strains in the largest functional category were petites with mutations in mitochondrial genes, indicating that mitochondria were related to HNK resistance. Additional analysis showed that resistance of petite mutants to HNK was associated with upregulation of the ATP-binding cassette transporter Pdr5, which pumps out HNK. We also found that several HNK-sensitive mitochondria mutants were not petites, and had larger lipid droplets (LDs). Furthermore, HNK treatment on wild-type yeast cells seemed to disrupt mitochondrial morphology, induced triacylglycerol synthesis, and generated supersized LDs surrounded by mitochondria and endoplasmic reticulum (ER). These changes are also applied to atp7Δ mutant if no carbon resource was available. These results suggested that HNK treatment partly impaired normal mitochondrial function to form larger LDs by altering lipid metabolism.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge