Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Glycobiology 2012-Jun

Glycosides of hydroxyproline: some recent, unusual discoveries.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Carol M Taylor
Chamini V Karunaratne
Ning Xie

Palavras-chave

Resumo

Glycosides of hydroxyproline (Hyp) in the plant cell wall matrix were discovered by Lamport and co-workers in the 1960s. Since then, much has been learned about these Hyp-rich glycoproteins. The intent of this review was to compare and contrast some less common structural motifs, in nontraditional roles, to uncover themes. Arabinosylation of short-peptide plant hormones is essential for growth, cell differentiation and defense. In a very recent development, prolyl hydroxylase and arabinosyltransferase activity has been shown to have a direct impact on the growth of root hairs in Arabidopsis thaliana. Pollen allergens of mugwort and ragweed contain proline-rich domains that are hydroxylated and glycosylated and play a structural role. In the case of mugwort, this domain also presents a significant immunogenic epitope. Major crops, including tobacco and maize, have been used to express and produce recombinant proteins of mammalian origin. The risks of plant-imposed glycosylation are discussed. In unicellular eukaryotes, Skp1 (a subunit of the E3(SCF) ubiquitin ligase complex) harbors a key Hyp residue that is modified by a linear pentasaccharide. These modifications may be involved in sensing oxygen levels. A few studies have probed the impact of glycosylation on the structure of Hyp-containing peptides. These have necessarily looked at small, synthetic molecules, since natural peptides and proteins are often isolable in only minuscule amounts and/or are heterogeneous in nature. The characterization of native structural motifs, together with the determination of glycopeptide conformation and properties, holds the key to rationalizing nature's architectural design.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge