Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2019

Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Omer Erdogan
Muruvvet Abbak
Gülen Demirbolat
Fatih Birtekocak
Mehran Aksel
Salih Pasa
Ozge Cevik

Palavras-chave

Resumo

In this study, we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Cynara scolymus (Artichoke) using microwave irradiation and the evaluation of its anti-cancer potential with photodynamic therapy (PDT). Silver nanoparticles formation was characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Silver nanoparticles formation was also investigated the surface charge, particle size and distribution using zetasizer analysis. The cytotoxic effect of AgNPs and/or PDT was studied by MTT assay and migration by the scratch assay. The apoptotic inducing ability of the AgNPs and/or PDT was investigated by intracellular ROS analysis, antioxidant enzyme levels (SOD, CAT, GPx and GSH), Hoechst staining and Bax/Bcl-2 analysis using western blotting. The mean particle size of produced AgNPs was found 98.47±2.04 nm with low polydispersity (0.301±0.033). Zeta potential values of AgNPs show -32.3± 0.8 mV. These results clearly indicate the successful formation of AgNPs for cellular uptake. Mitochondrial damage and intracellular ROS production were observed upon treatment with AgNPs (10μg/mL) and PDT (0.5 mJ/cm2) showed significant reducing cell migration, expression of Bax and suppression of Bcl-2. Significantly, biosynthesized AgNPs showed a broad-spectrum anti-cancer activity with PDT therapy and therefore represent promoting ROS generation by modulating mitochondrial apoptosis induction in MCF7 breast cancer cells.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge