Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Computational Biology and Chemistry 2018-Jun

Haemostatic effects of latex from Croton sparsiflorus Morang, in vitro, in vivo, in silico approaches.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
M C Kamaraj
S Mohan Raj
D Palani Selvam
S Subashchandrabose
A Kalaiselvan

Palavras-chave

Resumo

The present investigations are phytochemical screening of Latex aqueous (Laq) extract of C. sparsiflorus and study its role in homeostasis. It is being traditionally used for fresh cuts to stop bleeding immediately. To know the contents of extract, the quantitative phytochemical analysis were performed it showed the contents such as saponins (15.2%), alkaloids (7.61%), phenols (0.62%), tannins (1.1%), and flavonoids (0.224%). The in vitro and in vivo blood clotting mechanism was observed in Wister albino rats to understand the blood clotting activity. The in vitro cytotoxicity assay was performed by 3T3L1 cell lines evaluated by Laq extract of C. sparsiflorus to determine the toxic effects of the extract. The gas chromatographic and liquid chromatographic mass spectra (GCMS and LCMS) were observed there were three compounds obtained namely, 1) methyl-hexafuranoside, 2) cumarandione, and 3) crotonosine, in addition to that the NMR (1H and 13C) elemental analysis, FT-IR (4000-400 cm-1) and UV-vis (800-200 nm) spectra were also recorded in aqueous solution. The molecular docking studies performed, in which the blood clotting factors have a potential interaction with crotonosine. This in-silico study demonstrates the interactions of active components of C. sparsiflorus with blood clotting factors. Furthermore, since the crotonosine compound has more blood clotting factor the molecular structure was treated with density functional theory calculation (DFT) to understand the optimized geometry, vibrational behaviour and electronic excitation states.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge