Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Stem cells translational medicine 2014-Feb

Homing of neural stem cells from the venous compartment into a brain infarct does not involve conventional interactions with vascular endothelium.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Valentina Goncharova
Shreyasi Das
Walter Niles
Ingrid Schraufstatter
Aaron K Wong
Tatiana Povaly
Dustin Wakeman
Leonard Miller
Evan Y Snyder
Sophia K Khaldoyanidi

Palavras-chave

Resumo

Human neural stem cells (hNSCs) hold great potential for treatment of a wide variety of neurodegenerative and neurotraumatic conditions. Heretofore, administration has been through intracranial injection or implantation of cells. Because neural stem cells are capable of migrating to the injured brain from the intravascular space, it seemed feasible to administer them intravenously if their ability to circumvent the blood-brain barrier was enhanced. In the present studies, we found that interactions of hNSCs in vitro on the luminal surface of human umbilical vein endothelial cells was enhanced following enforced expression of cutaneous lymphocyte antigen on cell surface moieties by incubation of hNSCs with fucosyltransferase VI and GDP-fucose (fhNSCs). Interestingly, ex vivo fucosylation of hNSCs not only did not improve the cells homing into the brain injured by stroke following intravenous administration but also increased mortality of rats compared with the nonfucosylated hNSC group. Efforts to explain these unexpected findings using a three-dimensional flow chamber device revealed that transmigration of fhNSCs (under conditions of physiological shear stress) mediated by stromal cell-derived factor 1α was significantly decreased compared with controls. Further analysis revealed that hNSCs poorly withstand physiological shear stress, and their ability is further decreased following fucosylation. In addition, fhNSCs demonstrated a higher frequency of cellular aggregate formation as well as a tendency for removal of fucose from the cell surface. In summary, our findings suggest that the behavior of hNSCs in circulation is different from that observed with other cell types and that, at least for stroke, intravenous administration is a suboptimal route, even when the in vitro rolling ability of hNSCs is optimized by enforced fucosylation.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge