Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physical Chemistry Chemical Physics 2014-Mar

Hydrophobicity alone can not trigger aggregation in protonated mammalian serum albumins.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Javed M Khan
Syed A Abdulrehman
Fatima K Zaidi
Samudrala Gourinath
Rizwan H Khan

Palavras-chave

Resumo

Amyloid fibrils are associated with neurodegenerative disorders and are formed by a number of proteins. In this study, the amyloid-forming behavior of several different serum albumins was examined at pH 3.5 i.e., about two pH units below their isoelectric points (pI ∼ 5.5) to examine the roles played by negative charge and hydrophobicity of exogenously added surfactants such as SDS, SDBS and AOT. The propensities of SDS, SDBS and AOT to promote the formation of amyloid fibrils were investigated by using measurements of turbidity, Rayleigh scattering, ThT and CR dye binding, DLS as well as far-UV CD. At submicellar concentrations of SDS and SDBS (0.5-2.5 mM) amyloid fibrils were formed by all albumins studied whereas at higher concentrations amyloid fibril formation was completely inhibited. Interestingly AOT promoted amyloid fibril formation up to 11 mM without any inhibition. The interaction between the albumins and the surfactants was exothermic, as confirmed by isothermal titration calorimetry (ITC). From the turbidity, Rayleigh scattering and dynamic light scattering data, it was concluded that amyloid induction was promoted most by AOT followed by SDBS and SDS. Similar studies were performed at pH 7.4 i.e., about two units of pH above the albumins pI, and no amyloid fibrils were formed. From these studies we conclude that negatively charged surfactants induce amyloid fibril formation in serum albumins with the help of electrostatic and hydrophobic interactions. Besides the study performed at pH 7.4 indicates that hydrophobic interactions alone can not induce aggregation in serum albumins.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge