Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2019-Feb

Impacts of warming and water deficit on antioxidant responses in Panicum maximum Jacq.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Ricardo Borjas-Ventura
Leticia Alves
Reginaldo de Oliveira
Carlos Martínez
Priscila Gratão

Palavras-chave

Resumo

Agricultural activities are affected by many biotic and abiotic stresses associated with global climate change. Predicting the response of plants to abiotic stress under future climate scenarios requires an understanding of plant biochemical performance in simulated stress conditions. In this study, the antioxidant response of Panicum maximum Jacq. cv. Mombaça exposed to warming (+2°C above ambient temperature) (eT), water deficit (wS) and the combination eT + wS was analysed under field conditions using a temperature free-air-controlled enhancement facility. Warming was applied during the entire growth period. Data were collected at 13, 19 and 37 days after the start of the water deficit treatment (DAT) and at two sampling times (6:00 and 12:00 h). A significant decrease in chlorophyll was observed under the wS treatment, but an increment in total chlorophyll was observed in eT + wS, particularly at 19 DAT. Significant increase in H2 O2 content, malondialdehyde and protein oxidation was observed in the wS treatment at noon of the third sampling. In the combined wS + eT stress treatment, the activity of the enzymatic antioxidant system increased, particularly of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11). The chlorophyll fluorescence images showed that the photochemical performance was not significantly affected by the treatments. In conclusion, under simulated future warming and water stress conditions, the photosystem II (PSII) activity of P. maximum acclimated to moderate warming and a water-stressed environment associated with a relatively favourable antioxidant response, particularly in the activity of APX and SOD.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge