Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Technology (United Kingdom) 2016-Nov

Increased lead and cadmium tolerance of Typha angustifolia from Huaihe River is associated with enhanced phytochelatin synthesis and improved antioxidative capacity.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Yunlei Liu
Jian Chen
Shaonan Lu
Libo Yang
Jiazhong Qian
Shuqing Cao

Palavras-chave

Resumo

Heavy metal contamination of water is an increasing environmental problem worldwide, and the use of aquatic plants for phytoremediation of heavy metal pollution has become an important subject of research. One key to successful phytoremediation is the identification of plants that are efficient at sequestering heavy metals. In this study, we examined the growth and heavy metal accumulation of Typha angustifolia and compared growth characteristics and tolerance mechanisms in plants from the Huaihe and Chaohu Rivers irrigated with different concentrations of lead (Pb) and cadmium (Cd). T. angustifolia from Huaihe River showed enhanced tolerance and accumulation of Pb and Cd and had greater biomass and more vigorous growth than the ecotype from Chaohu River. In addition, higher phytochelatin (PC) content and significantly higher superoxide dismutase and catalase activities were detected in T. angustifolia from Huaihe River than in T. angustifolia from Chaohu River. These findings suggest that high Pb and Cd accumulation and tolerance in T. angustifolia from Chaohu River is associated with its higher PC synthesis and better antioxidative capacity, and that the Huaihe ecotype of T. angustifolia might also be an efficient species for phytoremediation of Pb and Cd in water contaminated by heavy metals.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge