Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cureus 2018-Jul

Integration of Next-generation Sequencing and Immune Checkpoint Inhibitors in Targeted Symptom Control and Palliative Care in Solid Tumor Malignancies: A Multidisciplinary Clinician Perspective.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Doron Feinsilber
Marco Ruiz
Sorin Buga
Leigh A Hatch
Andrew D Hatch
Katrina A Mears

Palavras-chave

Resumo

The molecular characterization of solid tumor malignancies with respect to tumorgenesis, risk stratification, and prognostication of chemotherapeutic side effects is multi-faceted. Characterizing these mechanisms requires a detailed understanding of cytogenetics and pharmacology. In addition to the standard palliative care interventions that address issues such as fatigue, neuropathy, performance status, depression, nutrition, cachexia, anxiety, and medical ethics, we must also delve into individual chemotherapy side effects. Comprehending these symptoms is more complex with the advent of broader targeted therapies. With the advent and initiation of Foundation Medicine (FMI) testing, we have been able to tailor regimens to the individual genetics of the patient. Next-generation sequencing (NGS) is a bioinformatic analysis used in order to create a targeted effort to understand the complex genetics of a vast array of malignancies. Through the process known as high-throughput sequencing we, as clinicians, can obtain more real-time genetic data and incorporate the information into our reasoning process. The process involves a broad manner in which deoxyribonucleic acid (DNA) sequence data is obtained including genome sequencing and resequencing, protein-DNA or proteinomics, chromatin immunoprecipitation (ChIP)-sequencing, ribonucleic acid (RNA) sequencing, and epigenomic analysis. High-throughput sequencing techniques including single molecule real-time sequencing, ion semiconductor sequencing, pyrose sequencing, sequencing by synthesis, sequencing by ligation, nanopore sequencing, and chain termination (otherwise known as Sanger sequencing) have expanded the realm of NGS and clinicians options.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge