Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2004-Apr

Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Leonardo D Gómez
Hélène Vanacker
Peter Buchner
Graham Noctor
Christine H Foyer

Palavras-chave

Resumo

To investigate the intercellular control of glutathione synthesis and its influence on leaf redox state in response to short-term chilling, genes encoding gamma-glutamylcysteine synthetase (gamma-ECS) and glutathione synthetase (GSH-S) were cloned from maize (Zea mays) and specific antibodies produced. These tools were used to provide the first information on the intercellular distribution of gamma-ECS and GSH-S transcript and protein in maize leaves, in both optimal conditions and chilling stress. A 2-d exposure to low growth temperatures (chill) had no effect on leaf phenotype, whereas return to optimal temperatures (recovery) caused extensive leaf bleaching. The chill did not affect total leaf GSH-S transcripts but strongly induced gamma-ECS mRNA, an effect reversed during recovery. The chilling-induced increase in gamma-ECS transcripts was not accompanied by enhanced total leaf gamma-ECS protein or extractable activity. In situ hybridization and immunolocalization of leaf sections showed that gamma-ECS and GSH-S transcripts and proteins were found in both the bundle sheath (BS) and the mesophyll cells under optimal conditions. Chilling increased gamma-ECS transcript and protein in the BS but not in the mesophyll cells. Increased BS gamma-ECS was correlated with a 2-fold increase in both leaf Cys and gamma-glutamylcysteine, but leaf total glutathione significantly increased only in the recovery period, when the reduced glutathione to glutathione disulfide ratio decreased 3-fold. Thus, while there was a specific increase in the potential contribution of the BS cells to glutathione synthesis during chilling, it did not result in enhanced leaf glutathione accumulation at low temperatures. Return to optimal temperatures allowed glutathione to increase, particularly glutathione disulfide, and this was associated with leaf chlorosis.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge