Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2018-Aug

Investigating the effect of MgO and CeO2 metal nanoparticle on the gasoline fuel properties: empirical modeling and process optimization by surface methodology.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Farzin Zamankhan
Vahid Pirouzfar
Fathollah Ommi
Mohsen Valihesari

Palavras-chave

Resumo

The main purpose of this paper is to investigate how to optimize gasoline in order to reduce the emitted pollutants caused by combustion, while the torque and power of the engine reach the maximum capabilities. To optimize gasoline formulation, an ethanol and magnesium oxide (MgO) or cerium oxide (CeO2) mixture was added to gasoline. This study explores the role of main variables such as type of metal nanoparticle additive, engine speed, and throttle on engine performance and exhaust gas emissions through the modeling and optimization methods. Experimental design conducted through the implementation of D-optimal design, taking into account the three main parameters. To review the efficiency of this novel fuel, it was tested by a four-stroke engine connected to a dynamometer and an analyzer, under different controlled environments: speeds of 1500, 2000, 2500, and 3000 rpm at both half and full throttle conditions. The analyzed data are the power and torque of the engine, the amount of emitted CO, CO2, HC, and NOx, the octane index, and the viscosity. The analyzed data were calculated and turned into models. Applying the models to data (the optimization process), close correlation between predicted and actual outcomes was found, highlighting the validity of the work. A secondary finding is that the CeO2 mixture used at higher speeds and throttles produces less emissions, while lower speeds and throttles using the MgO mixture produce less emissions.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge