Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Protoplasma 2018-Sep

Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Mohammad Akbari
Nasser Mahna
Katam Ramesh
Ali Bandehagh
Silvia Mazzuca

Palavras-chave

Resumo

Pistachio, one of the important tree nuts, is cultivated in arid and semi-arid regions where salinity is the most common abiotic stress encountered by this tree. However, the mechanisms underlying salinity tolerance in this plant are not well understood. In the present study, five 1-year-old pistachio rootstocks (namely Akbari, Badami, Ghazvini, Kale-Ghouchi, and UCB-1) were treated with four saline water regimes (control, 8, 12, and 16 dS m-1) for 100 days. At high salinity level, all rootstocks showed decreased relative water content (RWC), total chlorophyll content (TCHC), and carotenoids in the leaf, while ascorbic acid (AsA) and total soluble proteins (TSP) were reduced in both leaf and root organs. In addition, the total phenolic compounds (TPC), proline, glycine betaine, total soluble carbohydrate (TSC), and H2O2 content increased under salinity stress in all studied rootstocks. Three different ion exclusion strategies were observed in the studied rootstocks: (i) Na+ exclusion in UCB-1, because most of its Na+ is retained in the roots; (ii) Cl- exclusion in Badami, in which most of its Cl- remained in the roots; and (iii) similar concentrations of Na+ and Cl- were observed in the leaves and roots of Ghazvini, Akbari, and Kale-Ghouchi. Transport capacity (ST value) of K+ over Na+ from the roots to the leaves was more observable in UCB-1 and Ghazvini. Overall, the root system cooperated more effectively in UCB-1 and Badami for retaining and detoxifying an excessive amount of Na+ and Cl-. The results presented here provide important inputs to better understand the salt tolerance mechanism in a tree species for developing more salt-tolerant genotypes. Based on the results obtained here, the studied rootstocks from tolerant to susceptible are arranged as follows: UCB-1 > Badami > Ghazvini > Kale-Ghouchi > Akbari.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge