Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Venomous Animals and Toxins Including Tropical Diseases 2017

Jaburetox: update on a urease-derived peptide.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Arlete Beatriz Becker-Ritt
Camila Saretta Portugal
Célia Regina Carlini

Palavras-chave

Resumo

Urease from Canavalia ensiformis seeds was the first enzyme ever to be crystallized, in 1926. These proteins, found in plants, bacteria and fungi, present different biological properties including catalytic hydrolysis of urea, and also enzyme-independent activities, such as induction of exocytosis, pro-inflammatory effects, neurotoxicity, antifungal and insecticidal properties. Urease is toxic to insects and fungi per se but part of this toxicity relies on an internal peptide (~11 kDa), which is released upon digestion of the protein by insect enzymes. A recombinant form of this peptide, called jaburetox (JBTX), was constructed using jbureII gene as a template. The peptide exhibits liposome disruption properties, and insecticidal and fungicidal activities. Here we review the known biological properties activities of JBTX, and comment on new ones not yet fully characterized. JBTX was able to cause mortality of Aedes aegypti larvae in a feeding assay whereas in a dose as low as of 0.1 μg it provoked death of Triatoma infestans bugs. JBTX (10-5-10-6 M) inhibits the growth of E. coli, P. aeruginosa and B. cereus after 24 h incubation. Multilamellar liposomes interacting with JBTX undergo reorganization of the membrane's lipids as detected by small angle X-ray scattering (SAXS) studies. Encapsulating JBTX into lipid nanoparticles led to an increase of the peptide's antifungal activity. Transgenic tobacco and sugarcane plants expressing the insecticidal peptide JBTX, showed increased resistance to attack of the insect pests Spodoptera frugiperda, Diatraea saccharalis and Telchin licus licus. Many questions remain unanswered; however, so far, JBTX has shown to be a versatile peptide that can be used against various insect and fungus species, and in new bacterial control strategies.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge