Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Yakugaku Zasshi 2019

[Lysophosphatidic Acid Receptor Signaling Underlying Chronic Pain and Neuroprotective Mechanisms through Prothymosin α].

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Hiroshi Ueda

Palavras-chave

Resumo

For my Ph.D. research topic, I isolated endogenous morphine-like analgesic dipeptide, kyotorphin, which mediates Met-enkephalin release, and discovered kyotorphin synthetase, a putative receptor and antagonist. Furthermore, I succeeded in purifying μ-opioid receptor and functional reconstitution with purified G proteins. After receiving my full professor position at Nagasaki University in 1996, I worked on two topics of research, molecular mechanisms of chronic pain through lysophosphatidic acid (LPA) and identification and characterization of neuroprotective protein, prothymosin α. In a series of studies, we have shown that LPA signaling defines the molecular mechanisms of neuropathic pain and fibromyalgia in terms of development and maintenance. Above all, the discovery of feed-forward system in LPA production and pain memory may contribute to better understanding of chronic pain and future analgesic drug discovery. Regarding prothymosin α, we first discovered it as neuronal necrosis-inhibitory molecule through two independent mechanisms, such as toll-like receptor and F0/F1 ATPase, both which protect neurons through indirect mechanisms. Prothymosin α is released by non-classical and non-vesicular mechanisms on various stresses, such as ischemia, starvation, and heat-shock. Thus it may be called a new type of neuroprotective damage-associated molecular patterns (DAMPs)/Alarmins. Heterozygotic mice showed a defect in memory-learning and neurogenesis as well as anxiogenic behaviors. Small peptide, P6Q derived from prothymosin α retains neuroprotective actions, which include blockade of cerebral hemorrhage caused by late treatment with tissue plasminogen activator in the stroke model in mice.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge