Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2019-Sep

Mass spectrometry-based urinary metabolomics for the investigation on the mechanism of action of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves against ischemic stroke in rats.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Rongjin Wang
Liqiang Shi
Shu Liu
Zhiqiang Liu
Fengrui Song
Zhiheng Sun
Zhongying Liu

Palavras-chave

Resumo

As a traditional Chinese medicine, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves (ESL) can treat ischemic, neurasthenia, and hypertension diseases. However, only few studies have been conducted on the mechanism of action of ESL for ischemic disease treatment.This study aimed to discover the potential biomarkers in the rats caused by ischemic stroke and build a gene-enzyme-biomarker network to explore the mechanism of ESL treatment on ischemic stroke further.The urinary metabolomics strategy was developed by combining UPLC-Q-TOF/MS with multivariate data analysis. The gene-enzyme-biomarker network was built by Cytoscape 3.6.0 on the basis of the potential biomarkers filtered out via urinary metabolomic analysis. Then, the potential target enzymes of ESL in the treatment of ischemic stroke were selected for further validation analysis via the ELISA kits.A total of 42 biomarkers associated with ischemic stroke have been identified, among which 38 species can be adjusted by ESL, including 5'-methylthioadenosine, prostaglandin A2, l-methionine, aldosterone, 11b-hydroxyprogesterone, prostaglandin E3, dehydroepiandrosterone, taurine, 5-methoxyindoleacetate, and p-cresol glucuronide. These biomarkers were involved in several metabolic pathways, including taurine and hypotaurine, arachidonic acid, cysteine and methionine, steroid hormone biosynthesis, tryptophan, and tyrosine metabolism pathways. The gene-enzyme-biomarker network was built, and three predicted target proteins, including cyclooxygenase-2 (COX-2), monoamine oxidase (MAO), and nitric oxide synthase (NOS), were selected as the potential target enzymes for ESL in ischemic stroke treatment.All results showed that ESL can play a therapeutic role in treating ischemic stroke through different pathways. This study will provide an overall view of the mechanism underlying the action of ESL against ischemic stroke.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge