Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological and Pharmaceutical Bulletin 2018

Mechanisms of the pH- and Oxygen-Dependent Oxidation Activities of Artesunate.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Katsunori Tsuda
Licht Miyamoto
Shuichi Hamano
Yuri Morimoto
Yumi Kangawa
Chika Fukue
Yoko Kagawa
Yuya Horinouchi
Wenting Xu
Yasumasa Ikeda

Palavras-chave

Resumo

Artemisinin was discovered in 1971 as a constituent of the wormwood genus plant (Artemisia annua). This plant has been used as an herbal medicine to treat malaria since ancient times. The compound artemisinin has a sesquiterpene lactone bearing a peroxide group that offers its biological activity. In addition to anti-malarial activity, artemisinin derivatives have been reported to exert antitumor activity in cancer cells, and have attracted attention as potential anti-cancer drugs. Mechanisms that might explain the antitumor activities of artemisinin derivatives reportedly induction of apoptosis, angiogenesis inhibitory effects, inhibition of hypoxia-inducible factor-1α (HIF-1α) activation, and direct DNA injury. Reactive oxygen species (ROS) generation is involved in many cases. However, little is known about the mechanism of ROS formation from artemisinin derivatives and what types of ROS are produced. Therefore, we investigated the iron-induced ROS formation mechanism by using artesunate, a water-soluble artemisinin derivative, which is thought to be the underlying mechanism involved in artesunate-mediated cell death. The ROS generated by the coexistence of iron(II), artesunate, and molecular oxygen was a hydroxyl radical or hydroxyl radical-like ROS. Artesunate can reduce iron(III) to iron(II), which enables generation of ROS irrespective of the iron valence. We found that reduction from iron(III) to iron(II) was activated in the acidic rather than the neutral region and was proportional to the hydrogen ion concentration.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge