Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Chinese Medicine 2008

Mechanisms of vitexin preconditioning effects on cultured neonatal rat cardiomyocytes with anoxia and reoxygenation.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Liu-Yi Dong
Zhi-Wu Chen
Yan Guo
Xin-Ping Cheng
Xu Shao

Palavras-chave

Resumo

This study was aimed at investigating the protective effect and mechanism of vitexin preconditioning (VPC) on cultured neonatal rat cardiomyocytes after anoxia and reoxygenation (A/R). An A/R model was established by using cultured neonatal rat cardiomyocytes. Cellular injury was evaluated by measuring cell viability, the releases of creatine kinase (CK), and lactate dehydrogenase (LDH). The apoptosis rate of cardiomyocytes after Anoxia/reoxygenation and the activities of extracellular signal-regulated protein kinases (ERKs) were measured. The intracellular calcium indicated by the fluorescence in cardiomyocytes was measured by the laser confocal microscope. Vitexin preconditioning (10, 30 and 100 microM) significantly enhanced the cell viability, markedly inhibited A/R-induced increases of LDH and CK release, obviously decreased the number of apoptotic cardiomyocytes and markedly decreased the fluorescence intensity value of [Ca(2+)](i) in cardiomyocytes. Exposure to anoxia or vitexin preconditioning significantly increased the phospho-ERK level, and the increase was markedly inhibited by PD98059, an inhibitor of the upstream kinase of ERK. These results suggest that vitexin preconditioning has a protective effect on cardiomyocytes A/R injury through the improvement of cell viability, decrease of LDH and CK release, such that the protective mechanism may relate to its ability to inhibit the cardiomyocytes apoptosis, reduce the cardiomyocytes calcium overload and increase the abundance of phosphor-ERK1/2 of the cardiomyocytes after anoxia and reoxygenation.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge