Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2009-Jun

Modulation of the antioxidative response of Spartina densiflora against iron exposure.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
David Martínez Domínguez
Rafael Torronteras Santiago
Francisco Córdoba García

Palavras-chave

Resumo

Spartina densiflora, an invader cordgrass living in polluted salt marshes of the Odiel estuary (SW Spain), was collected and cultured under controlled laboratory conditions. After acclimation to non-polluted soils for 28 days, both metabolites and enzymes activities used as indicators of oxidative stress were reduced significantly. Then, plants were exposed to 500 and 1000 ppm Fe-ethylenediamine-N,N'-2-hydroxyphenyl acetic acid (EDDHA) for 28 days. Our data demonstrate that iron content in leaves was enhanced by iron exposure. This iron increase caused an enhancement in the concentration of H2O2, hydroperoxides and lipid peroxidation, and a decrease in chlorophyll levels. Thus, iron exposure led to oxidative stress conditions. However, oxidative indicators stabilised after first 2 weeks of exposure, although the highest iron levels in leaves were reached at the end of treatments. Iron exposure induced an enhancement of catalase, ascorbate peroxidase and guaiacol peroxidase activities, together with an increase in total and oxidised ascorbate. This response may be defensive against oxidative stress and thus help to explain why cell oxidative damages were stabilised. Thus, by using a sensitive long-time protocol, iron-dependent oxidative damages may be controlled and even reverted successfully by the activation of the antioxidative defences of S. densiflora. This efficient antioxidative system, rapidly modulated in response to excess iron and other environmental stressors, may account for S. densiflora's successful adaptation to stress conditions in its habitat.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge