Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2002-Jan

Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
S C Clifford
S K Arndt
M Popp
H G Jones

Palavras-chave

Resumo

The drought-tolerant tree species Ziziphus mauritiana Lamk. and Z. rotundifolia Lamk. were shown to have similar high mucilage concentrations (7-10% dry weight) in their leaves, with large numbers of mucilage-containing cells in the upper epidermis and extracellular mucilage-containing cavities in the leaf veins and stem cortex. The main sugar constituents of the water-soluble mucilage extract were rhamnose, glucose and galactose. During drought-stress in two independent studies, foliar mucilage content was unaffected in both species, but glucose and starch contents declined significantly in crude mucilage extracts from droughted leaves. Enzymatic hydrolysis of the mucilage extract using alpha-amylase and amyloglucosidase released glucose, indicating that a mucilage-associated water-soluble glucan, with alpha-1,4- and alpha-1,6-linkages, may exist which was extracted together with the mucilage. From the current data, it is not possible to localize the glucan to determine whether or not it is associated with mucilage-containing cells. Data from pressure-volume analyses of drought-stressed and control leaves showed that, in line with their similar mucilage contents, the relative leaf capacitance isotherm (change in relative water content per unit change in water potential) was similar in both species. During drought-stress, reduced relative capacitance resulted from osmotic adjustment and decreased wall elasticity. Data suggest that in Ziziphus leaves, intracellular mucilages play no part in buffering leaf water status during progressive drought. In Ziziphus species, growing in environments with erratic rainfall, the primary role of foliar mucilage and glucans, rather than as hydraulic capacitors, may be as sources for the remobilization of solutes for osmotic adjustment, thus enabling more effective water uptake and assimilate redistribution into roots and stems prior to defoliation as the drought-stress intensified.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge