Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chest 2012-Mar

Noninvasive ventilation in mild obesity hypoventilation syndrome: a randomized controlled trial.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Jean-Christian Borel
Renaud Tamisier
Jesus Gonzalez-Bermejo
Jean-Philippe Baguet
Denis Monneret
Nathalie Arnol
Pascale Roux-Lombard
Bernard Wuyam
Patrick Levy
Jean-Louis Pépin

Palavras-chave

Resumo

OBJECTIVE

Open studies suggest that treatment of obesity hypoventilation syndrome (OHS) by noninvasive ventilation (NIV) restores sleep quality and daytime vigilance and reduces cardiovascular morbidity. However, to our knowledge no randomized controlled trial (RCT) comparing NIV to conservative measures is available in the field. The goal of this study was to assess in patients with OHS, during an RCT, effects of 1-month NIV compared with lifestyle counseling on blood gas measurements, sleep quality, vigilance, and cardiovascular, metabolic, and inflammatory parameters.

METHODS

Thirty-five patients in whom OHS was newly diagnosed were randomized either to the NIV group or the control group represented by lifestyle counseling. Assessments included blood gas levels, subjective daytime sleepiness, metabolic parameters, inflammatory (hsCRP, leptin, regulated upon activation normal T-cell express and secreted [RANTES], monocyte chemoattractant protein-1, IL-6, IL-8, tumor necrosis factor-α, resistin) and antiinflammatory (adiponectin, IL-1-RA) cytokines, sleep studies, endothelial function (reactive hyperemia measured by peripheral arterial tonometry [RH-PAT]), and arterial stiffness.

RESULTS

Despite randomization, NIV group patients (n = 18) were older (58 ± 11 years vs 54 ± 6 years) with a higher baseline Paco(2) (47.9 ± 4.2 mm Hg vs 45.2 ± 3 mm Hg). In intention-to-treat analysis, compared with control group, NIV treatment significantly reduced daytime Paco(2) (difference between treatments: -3.5 mm Hg; 95% CI, -6.2 to -0.8) and apnea-hypopnea index (-40.3/h; 95% CI, -62.4 to -18.2). Sleep architecture was restored, although nonrespiratory microarousals increased (+9.4/h of sleep; 95% CI, 1.9-16.9), and daytime sleepiness was not completely normalized. Despite a dramatic improvement in sleep hypoxemia, glucidic and lipidic metabolism parameters as well as cytokine profiles did not vary significantly. Accordingly, neither RH-PAT (+0.02; 95% CI, -0.24 to 0.29) nor arterial stiffness (+0.22 m/s; 95% CI, -1.47 to 1.92) improved.

CONCLUSIONS

One month of NIV treatment, although improving sleep and blood gas measurements dramatically, did not change inflammatory, metabolic, and cardiovascular markers.

BACKGROUND

ClinicalTrials.gov; No.: NCT00603096; URL: www.clinicaltrials.gov.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge