Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Pharmaceutical Biotechnology 2018-Dec

Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and testing of their Antibacterial and Antioxidant Properties.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Nickolas Rigopoulos
Eleni Thomou
Αntonios Kouloumpis
Eleni Lamprou
Varvara Petropoulea
Dimitrios Gournis
Efthymios Poulios
Haralampos Karantonis
Efstathios Giaouris

Palavras-chave

Resumo

In this study, silver nanoparticles (AgNPs) were synthesized using Banana Peel Extract (BPE), and characterized using UV- Vis absorbance spectroscopy, X-Ray Powder Diffraction (XRD), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). UV - Vis absorbance spectroscopy showed the characteristic plasmon resonance of AgNPs at 433 nm. Nanoparticle size (between 5 and 9 nm) was measured using AFM, whereas their crystallinity was shown by XRD. FTIR identified the ligands that surround the nanoparticle surface. The synthesis conditions were optimised using Central Composite Design (CCD) under Response Surface Methodology (RSM). Silver nitrate (AgNO3) and BPE concentrations (0.25- 2.25 mM, 0.2- 1.96 % v/v respectively), incubation period (24 - 120 h) and pH level (2.3 - 10.1) were chosen as the four independent factors. The fitting parameters (i.e. the wavelength at peak maximum, the peak area, and the peak width) of a Voigt function of the UV- Vis spectra were chosen as the responses. An optimum combination of all independent factors was identified (BPE concentration 1.7 % v/v, AgNO3 concentration 1.75 mM, incubation period 48 h, pH level 4.3), giving minimum peak wavelength and peak width. The antibacterial properties of the AgNPs were tested against Escherichia coli and Staphylococcus aureus using the tube dilution test. The nanoparticles inhibited the growth of E. coli, whereas S. aureus growth was not affected. However, no superiority of AgNPs compared to AgNO3 used for their fabrication (1.75 mM), with respect to antibacterial action, could be here demonstrated. AgNPs were found to present moderate antioxidant activity(44.71± 3.01%), as measured using the 1,1 - diphenyl - 2 - picrylhydrazyl (DPPH) assay, while the BPE (used for their fabrication) presented alone (100%) an antioxidant action equal to 86±1%, something expected due to its higher total phenolic content (TPC) compared to that of nanoparticles. Altogether, the results of this study highlight the potential of an eco-friendly method to synthesize nanoparticles and its promising optimization through statistical experimental design. Future research on the potential influence of other synthesis parameters on nanoparticles yield and properties could further promote their useful biological activities towards their successful application in the food industry and other settings.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge