Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chromatography A 2018-Aug

Optimization, validation and application of headspace solid-phase microextraction gas chromatography for the determination of 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla (H.B.K.) Mez essential oil in skin permeation samples.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Tainá Kreutz
Letícia G Lucca
Orlando A R Loureiro-Paes
Helder F Teixeira
Valdir F Veiga
Renata P Limberger
George G Ortega
Letícia S Koester

Palavras-chave

Resumo

Aniba canelilla (H.B.K.) Mez is an aromatic plant from the Amazon region whose essential oil has 1-nitro-2-phenylethane (NP) and methyleugenol (ME) as major compounds. Despite of the scientifically proven antifungal and anti-inflammatory activities for these compounds, there is no report up to date about the topical permeation or quantification of NP and ME on skin samples. The aim of this study was the validation of an optimized bioanalytical method by solid-phase microextraction in headspace mode in gas chromatograph with flame ionization detector (HS-SPME-GC-FID) for the determination of NP and ME from the oil in different samples from permeation study, such as porcine ear skin (PES) layers (stratum corneum, epidermis and dermis) and receptor fluid (RF). For this propose polydimethylsiloxane fibers (100 μm) were used and HS-SPME extraction condition consisted of 53 °C, 21 min, and 5% w.v-1 NaCl addition. The wide range of the calibration curve (2.08-207.87 μg mL-1 for NP and 0.40-40.41 μg mL-1 for ME), the presence of matrix interferences and the intrinsic characteristics of HS-SPME required a data linearization using Log10. Thereby, data and the gained results presented homoscedasticity, normalization of residues and adequate linearity (r2 > 0.99) and accuracy for both compounds. In order to verify the applicability of the validated method, the HS-SPME-GC-FID procedure was performed to determine the amount of NP and ME permeated and retained in samples after Franz diffusion cell study from different dosages (20, 100 and 200 μL) of A. canelilla oil. Compounds permeation showed a progressive increase and penetration dependence based on the dosage applied. Furthermore, retention was in order receptor fluid >> dermis >> epidermis >> stratum corneum for both compounds, suggesting NP and ME could penetrate deep tissue, probably due to the partition coefficient, mass, size, and solubility of these compounds. In conclusion, the proposed method by HS-SPME-GC-FID to quantify 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla essential oil was able to determine selectively, precisely and accurately these main compounds in skin permeation samples.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge