Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
British Journal of Dermatology 2006-Jul

Oral zinc sulphate causes murine hair hypopigmentation and is a potent inhibitor of eumelanogenesis in vivo.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
P M Plonka
B Handjiski
D Michalczyk
M Popik
R Paus

Palavras-chave

Resumo

BACKGROUND

C57BL/6 a/a mice have been widely used to study melanogenesis, including in electron paramagnetic resonance (EPR) studies. Zinc cations modulate melanogenesis, but the net effect of Zn2+ in vivo is unclear, as the reported effects of Zn2+ on melanogenesis are ambiguous: zinc inhibits tyrosinase and glutathione reductase in vitro, but also enhances the activity of dopachrome tautomerase (tyrosinase-related protein-2) and has agonistic effects on melanocortin receptor signalling.

OBJECTIVE

To determine in a C57BL/6 a/a murine pilot study whether excess zinc ions inhibit, enhance or in any other way alter hair follicle melanogenesis in vivo, and to test the usefulness of EPR for this study.

METHODS

ZnSO(4).7H2O was continuously administered orally to C57BL/6 a/a mice during spontaneous and depilation-induced hair follicle cycling (20 mg mL-1; in drinking water; mean+/-SD daily dose 1.2+/-0.53 mL), and hair pigmentation was examined macroscopically, by routine histology and by EPR.

RESULTS

Oral zinc cations induced a bright brown lightening of new hair shafts produced during anagen, but without inducing an EPR-detectable switch from eumelanogenesis to phaeomelanogenesis. The total content of melanin in the skin and hair shafts during the subsequent telogen phase, i.e. after completion of a full hair cycle, was significantly reduced in Zn-treated mice (P=0.0005). Compared with controls, melanin granules in precortical hair matrix keratinocytes, hair bulb melanocytes and hair shafts of zinc-treated animals were reduced and poorly pigmented. Over the course of several hair cycles, lasting hair shaft depigmentation was seen during long-term exposure to high-dose oral Zn2+.

CONCLUSIONS

High-dose oral Zn2+ is a potent downregulator of eumelanin content in murine hair shafts in vivo. The C57BL/6 mouse model offers an excellent tool for further dissecting the as yet unclear underlying molecular basis of this phenomenon, while EPR technology is well suited for the rapid, qualitative and quantitative monitoring of hair pigmentation changes.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge