Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biochemistry and Cell Biology 2002-Oct

Oxidative stress in mice is dependent on the free glucose content of the diet.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Vanderlei Folmer
Júlio C M Soares
J B T Rocha

Palavras-chave

Resumo

In animals, chronic intake of diets with high proportions of rapidly absorbable glucose promotes the development of insulin resistance. High levels of glucose can produce permanent chemical alterations in proteins and lipid peroxidation. delta-Aminolevulinate dehydratase (delta-ALA-D) is a sulfhydryl-containing enzyme essential for all aerobic organisms and is highly sensitive to the presence of pro-oxidants elements. The heme synthetic pathway is impaired in porphyria and a frequent coexistence of diabetes mellitus and porphyria disease has been reported in humans and experimental animal models, which can be casually linked to the delta-ALA-D inhibition found in diabetics. The present study was designed to evaluate the effect of two different diets, a high glucose (HG) diet and a high starch (HS) diet, on lipid peroxidation levels in different tissues (brain, liver, and kidney) and on delta-ALA-D activity (from liver and kidney) in mice. Plasma glucose and triglyceride levels were significantly higher in mice fed HG than in mice fed HS (P < 0.02 and P < 0.03, respectively). Thiobarbituric acid reactive species (TBA-RS) content was significantly increased in kidney and liver from HG diet-fed mice when compared with animals fed HS diets (P < 0.001). Hepatic delta-ALA-D activity of HG diet-fed animals was significantly lower than that of HS diet-fed animals (P < 0.01). The results of this study support the hypothesis that consumption of a diet with high free glucose can promote the development of oxidative stress that we tentatively attribute to hyperglycemia.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge