Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2019-Jan

Phytomodulatory proteins promote inhibition of hepatic glucose production and favor glycemic control via the AMPK pathway.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Keciany de Oliveira
Maria Gomes
Renata Vasconcelos
Ewerton de Abreu
Rodrigo Fortunato
Adriano Loureiro
Andrelina Coelho-de-Souza
Raquel de Oliveira
Cleverson de Freitas
Márcio Ramos

Palavras-chave

Resumo

Phytomodulatory proteins from the latex of the medicinal plant Calotropis procera has been shown to be implicated in many pharmacological properties. However there is no current information about their activity on glucose metabolism, although the latex is used in folk medicine for treating diabetes. In this study the phytomodulatory proteins (LP) from C. procera latex were assessed on glycemic homeostasis. Control animals received a single intravenous dose (5 mg/kg) of LP or saline solution (CTL). Four hours after treatment, the animals were euthanized and their livers were excised for analysis by western blot and RT-PCR AMP-activated protein kinase (AMPK), phosphoenolpyruvate carboxykinase (PEPCK) and tumor necrosis factor alpha (TNF-α). In vivo tests of intraperitoneal tolerance to insulin, glucose and pyruvate were also performed, and the effect of LP administration on fed glycemia was studied followed by blood analysis to determine serum insulin levels. Treatment with LP reduced glycemia two hours after glucose administration (LP: 87.2 ± 3.70 mg/dL versus CTL: 115.6 ± 8.73 mg/dL). However, there was no change in insulin secretion (CTL: 14.16 ± 0.68 mUI/mL and LP: 14.96 ± 0.55 mUI/mL). LP improved the insulin sensitivity, represented by a superior glucose decay constant during an insulin tolerance test (kITT) (4.17 ± 0.94%/min) compared to the CTL group (0.82 ± 0.72%/min), and also improved glucose tolerance at 30 min (105.2 ± 12.4 mg/dL versus 154.2 ± 18.51 mg/dL), while it decreased hepatic glucose production at 15 and 30 min (LP: 75.5 ± 9.31 and 52.5 ± 12.05 mg/dL compared to the CTL: 79.0 ± 3.02 and 84.5 ± 7.49 mg/dL). Furthermore, there was a significant inhibition of gene expression of PEPCK (LP: 0.66 ± 0.06 UA and CTL: 1.14 ± 0.22 UA) and an increase of phosphorylated AMPK (LP: 1.342 ± 0.21 UA versus CTL: 0.402 ± 0.09 UA). These findings confirm the effect of LP on glycemic control and suggest LP may be useful in diabetes treatment. However, the pharmacological mechanism of LP in PEPCK modulation still needs more clarification.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge