Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Cancer Therapeutics 2008-Jun

Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Gautam Sethi
Kwang Seok Ahn
Bokyung Sung
Bharat B Aggarwal

Palavras-chave

Resumo

Pinitol (3-O-methyl-chiroinositol), a component of traditional Ayurvedic medicine (talisapatra), has been shown to exhibit anti-inflammatory and antidiabetic activities through undefined mechanisms. Because the transcription factor nuclear factor-kappaB (NF-kappaB) has been linked with inflammatory diseases, including insulin resistance, we hypothesized that pinitol must mediate its effects through modulation of NF-kappaB activation pathway. We found that pinitol suppressed NF-kappaB activation induced by inflammatory stimuli and carcinogens. This suppression was not specific to cell type. Besides inducible, pinitol also abrogated constitutive NF-kappaB activation noted in most tumor cells. The suppression of NF-kappaB activation by pinitol occurred through inhibition of the activation of IkappaBalpha kinase, leading to sequential suppression of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation, p65 nuclear translocation, and NF-kappaB-dependent reporter gene expression. Pinitol also suppressed the NF-kappaB reporter activity induced by tumor necrosis factor receptor (TNFR)-1, TNFR-associated death domain, TNFR-associated factor-2, transforming growth factor-beta-activated kinase-1 (TAK-1)/TAK1-binding protein-1, and IkappaBalpha kinase but not that induced by p65. The inhibition of NF-kappaB activation thereby led to down-regulation of gene products involved in inflammation (cyclooxygenase-2), proliferation (cyclin D1 and c-myc), invasion (matrix metalloproteinase-9), angiogenesis (vascular endothelial growth factor), and cell survival (cIAP1, cIAP2, X-linked inhibitor apoptosis protein, Bcl-2, and Bcl-xL). Suppression of these gene products by pinitol enhanced the apoptosis induced by TNF and chemotherapeutic agents and suppressed TNF-induced cellular invasion. Our results show that pinitol inhibits the NF-kappaB activation pathway, which may explain its ability to suppress inflammatory cellular responses.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge