Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Function 2019-Jul

Potential effects of rapeseed peptide Maillard reaction products on aging-related disorder attenuation and gut microbiota modulation in d-galactose induced aging mice.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Shudong He
Zuoyong Zhang
Hanju Sun
Yuchen Zhu
Xiaodong Cao
Yongkang Ye
Junhui Wang
Yanping Cao

Palavras-chave

Resumo

As a good flavor enhancer, rapeseed peptide Maillard reaction products (MRPs) were developed, and the effects of MRPs on d-galactose induced aging Kunming mice were investigated for 6 weeks with low (200 mg kg-1 day-1), medium (400 mg kg-1 day-1) and high (800 mg kg-1 day-1) doses. Compared with the natural aging group and d-galactose induced aging mice, the mice with MRP administration showed increases in body weight gain, food intake, organ indexes, feces color and urine fluorescence intensity. MRP intake significantly decreased the MDA content and elevated the activities of CAT, SOD and GSH-Px, and T-AOC in the serum and tissues of the liver, kidney and brain. Additionally, AChE activity was decreased in the brain, while Na+-K+ ATPase and Ca2+-Mg2+ ATPase activity increased in a dose-dependent manner, and decreasing levels of IL-1β, IL-6 and TNF-α were observed in the liver and kidney. Histopathological analysis suggested an attenuation of inflammatory cell infiltration in the liver and kidney without cell necrosis. High-throughput sequencing results revealed that the ratio of Firmicutes to Bacteroidetes increased in MRP groups, and the pathogenic bacteria were significantly inhibited, while some beneficial bacteria were significantly increased in the intestine. Overall, our results indicated that MRP consumption might have potential beneficial effects on postponing the aging process via reducing the oxidative stress and gut microflora modulation.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge