Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food Chemistry 2013-Dec

Pro-oxidant/antioxidant behaviours of ascorbic acid, tocopherol, and plant extracts in n-3 highly unsaturated fatty acid rich oil-in-water emulsions.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Chamila Jayasinghe
Naohiro Gotoh
Shun Wada

Palavras-chave

Resumo

This study investigated the oxidative stability of n-3 highly unsaturated fatty acid (n-3 HUFA) rich (35% n-3 HUFA) oil-in-water emulsions (10 wt% oil) with commercial antioxidants and natural plant extracts. Ascorbic acid, α-tocopherol, and the extracts of Indian gooseberry fruit (Emblica officinalis) (IGFE) and sweet basil leaves (Ocimum basilicum L.) (SBLE) were used for the study as antioxidants. The progress of oxidation in the systems was evaluated at 35 °C over 120 h against a control (without antioxidant) by monitoring the formation of primary (conjugated dienes) and secondary (volatile carbonyl compounds) oxidation products. Volatile carbonyl compounds were trapped as derivatives of pentafluorophenyl hydrazine and quantified by headspace solid-phase microextraction analysis. About 40 volatile carbonyls were successfully identified by this method. trans,trans-2,4-Heptadienal, trans,cis-2,4-heptadienal, 3,5-octadien-2-one, and 1-penten-3-ol were predominant. The volatile carbonyl compounds and conjugated dienes were formed at low rates in emulsion systems in which α-tocopherol and natural plant extracts had been introduced, compared to the control. Emulsion systems containing ascorbic acid showed low stability, as indicated by the oxidation products that were formed at high rates compared to the control. These results indicated that ascorbic acid activated the oxidation reactions in n-3 HUFA rich water emulsions, while natural plant extracts that were rich in polyphenols and α-tocopherol were active as antioxidants. The present study further demonstrated the applicability of the polar paradox theory in the determination of stability for n-3 HUFA rich water emulsions with commercial antioxidants and natural plant extracts.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge