Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 2003-Feb

Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Ferenc Zsila
Zsolt Bikádi
Miklós Simonyi

Palavras-chave

Resumo

The plant derived flavonoid compound quercetin, possesses wide range of biological activities in the human body by interacting with nucleic acids, enzymes and other proteins. As has recently been shown this molecule of polyphenolic type extensively binds to human serum albumin (HSA), the most abundant carrier protein in the blood. Electronic absorption, circular dichroism (CD) spectroscopy and molecular modelling methods were used to characterize optical properties of the quercetin-HSA complex, and to gain information on the binding mechanism at molecular level. The red shift and hypochromism of the longest-wavelength absorption band of quercetin relative to the spectral properties in ethanol suggests that one or more phenolic OH groups of the bound ligand is ionized and that the exocyclic phenyl ring is not coplanar with the benzopyrone moiety. It was found that quercetin shows extrinsic optical activity on interaction with HSA. The induced CD spectra were utilized to calculate the association constant at 37 degrees (1.46+/-0.21 x 10(4)M(-1)) and to probe the ligand binding site. Results of the CD displacement experiments performed with palmitic acid and salicylate were interpreted together with the findings of molecular modelling calculation performed on the quercetin-HSA complex. Computational mapping of possible binding sites of quercetin revealed the molecule to be bound in the large hydrophobic cavity of subdomain IIA. The protein microenvironment of this site was found to be rich in polar (basic) amino acid residues which are able to help to stabilize the negatively charged ligand bound in non-planar conformation. Additionally, the position of quercetin within the binding pocket allows simultaneous binding of other ligands such as warfarin, or sodium salycilate.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge