Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 1991-Apr

Protein turnover as a component in the light/dark regulation of phosphoenolpyruvate carboxylase protein-serine kinase activity in C4 plants.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
J Jiao
C Echevarría
J Vidal
R Chollet

Palavras-chave

Resumo

Maize leaf phosphoenolpyruvate carboxylase [PEPC; orthophosphate:oxaloacetate carboxy-lyase (phosphorylating), EC 4.1.1.31] protein-serine kinase (PEPC-PK) phosphorylates serine-15 of its target enzyme, thus leading to an increase in catalytic activity and a concomitant decrease in malate sensitivity of this cytoplasmic C4 photosynthesis enzyme in the light. We have recently demonstrated that the PEPC-PK activity in maize leaves is slowly, but strikingly, increased in the light and decreased in darkness. In this report, we provide evidence that cycloheximide, an inhibitor of cytoplasmic protein synthesis, when fed to detached leaves of C4 monocots (maize, sorghum) and dicots (Portulaca oleracea) in the dark or light, completely prevents the in vivo light activation of PEPC-PK activity regardless of whether the protein kinase activity is assessed in vivo or in vitro. In contrast, chloramphenicol, an inhibitor of protein synthesis in chloroplasts, has no effect on the light activation of maize PEPC-PK. Similarly, treatment with cycloheximide did not influence the light activation of other photosynthesis-related enzymes in maize, including cytoplasmic sucrose-phosphate synthase and chloroplast stromal NADPH-malate dehydrogenase and pyruvate, Pi dikinase. These and related results, in which detached maize leaves were treated simultaneously with cycloheximide and microcystin-LR, a potent in vivo and in vitro inhibitor of the PEPC type 2A protein phosphatase, indicate that short-term protein turnover of the PEPC-PK itself or some other essential component(s) (e.g., a putative protein that modifies this kinase activity) is one of the primary levels in the complex and unique regulatory cascade effecting the reversible light activation/seryl phosphorylation of PEPC in the mesophyll cytoplasm of C4 plants.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge