Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience Research

Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Moussa B H Youdim
Orit Bar Am
Merav Yogev-Falach
Orly Weinreb
Wakako Maruyama
Makato Naoi
Tamar Amit

Palavras-chave

Resumo

Mitochondria are involved directly in cell survival and death. The assumption has been made that drugs that protect mitochondrial viability and prevent apoptotic cascade-induced mitochondrial permeability transition pore (MPTp) opening will be cytoprotective. Rasagiline (N-propargyl-1R-aminoindan) is a novel, highly potent irreversible monoamine oxidase (MAO) B inhibitor anti-Parkinson drug. Unlike selegiline, it is not derived from amphetamine, and is not metabolized to neurotoxic L-methamphetamine derivative. In addition, it does not have sympathomimetic activity. Rasagiline is effective as monotherapy or adjunct to levodopa for patients with early and late Parkinson's disease (PD) and adverse events do not occur with greater frequency in subjects receiving rasagiline than in those on placebo. Phase III controlled studies indicate that it might have a disease-modifying effect in PD that may be related to its neuroprotective activity. Its S isomer, TVP1022, is more than 1,000 times less potent as an MAO inhibitor. Both drugs, however, have neuroprotective activity in neuronal cell cultures in response to various neurotoxins, and in vivo in response to global ischemia, neurotrauma, head injury, anoxia, etc., indicating that MAO inhibition is not a prerequisite for neuroprotection. Their neuroprotective effect has been demonstrated to be associated directly with the propargylamine moiety, which protects mitochondrial viability and MTPp by activating Bcl-2 and protein kinase C (PKC) and by downregulating the proapoptotic FAS and Bax protein families. Rasagiline and its derivatives also process amyloid precursor protein (APP) to the neuroprotective, neurotrophic, soluble APP alpha (sAPPalpha) by PKC- and MAP kinase-dependent activation of alpha-secretase. The identification of the propargylamine moiety as the neuroprotective component of rasagiline has led us to development of novel bifunctional anti-Alzheimer drugs (ladostigil) possessing cholinesterase and brain-selective MAO inhibitory activity and a similar neuroprotective mechanism of action.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge