Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
World Journal of Stem Cells 2013-Oct

Regenerative medicine based applications to combat stress urinary incontinence.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Hatim Thaker
Arun K Sharma

Palavras-chave

Resumo

Stress urinary incontinence (SUI), as an isolated symptom, is not a life threatening condition. However, the fear of unexpected urine leakage contributes to a significant decline in quality of life parameters for afflicted patients. Compared to other forms of incontinence, SUI cannot be easily treated with pharmacotherapy since it is inherently an anatomic problem. Treatment options include the use of bio-injectable materials to enhance closing pressures, and the placement of slings to bolster fascial support to the urethra. However, histologic findings of degeneration in the incontinent urethral sphincter invite the use of tissues engineering strategies to regenerate structures that aid in promoting continence. In this review, we will assess the role of stem cells in restoring multiple anatomic and physiological aspects of the sphincter. In particular, mesenchymal stem cells and CD34(+) cells have shown great promise to differentiate into muscular and vascular components, respectively. Evidence supporting the use of cytokines and growth factors such as hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor and insulin-like growth factor further enhance the viability and direction of differentiation. Bridging the benefits of stem cells and growth factors involves the use of synthetic scaffolds like poly (1,8-octanediol-co-citrate) (POC) thin films. POC scaffolds are synthetic, elastomeric polymers that serve as substrates for cell growth, and upon degradation, release growth factors to the microenvironment in a controlled, predictable fashion. The combination of cellular, cytokine and scaffold elements aims to address the pathologic deficits to urinary incontinence, with a goal to improve patient symptoms and overall quality of life.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge