Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2013

Rhein, a natural anthraquinone derivative, attenuates the activation of pancreatic stellate cells and ameliorates pancreatic fibrosis in mice with experimental chronic pancreatitis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Siu Wai Tsang
Hongjie Zhang
Chengyuan Lin
Haitao Xiao
Michael Wong
Hongcai Shang
Zhi-Jun Yang
Aiping Lu
Ken Kin-Lam Yung
Zhaoxiang Bian

Palavras-chave

Resumo

Pancreatic fibrosis, a prominent histopathological feature of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma, is essentially a dynamic process that leads to irreversible scarring of parenchymal tissues of the pancreas. Though the exact mechanisms of its initiation and development are poorly understood, recent studies suggested that the activation of pancreatic stellate cells (PSCs) plays a critical role in eliciting such active course of fibrogenesis. Anthraquinone compounds possess anti-inflammatory bioactivities whereas its natural derivative rhein has been shown to effectively reduce tissue edema and free-radical production in rat models of inflammatory conditions. Apart from its anti-inflammatory properties, rhein actually exerts strong anti-fibrotic effects in our current in-vivo and in-vitro experiments. In the mouse model of cerulein-induced CP, prolonged administration of rhein at 50 mg/kg/day significantly decreased immunoreactivities of the principal fibrotic activators alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β) on pancreatic sections implicating the activation of PSCs, which is the central tread to fibrogenesis, was attenuated. Consequently, the overwhelmed deposition of extracellular matrix proteins fibronectin 1 (FN1) and type I collagen (COL I-α1) in exocrine parenchyma was found accordingly reduced. In addition, the expression levels of sonic hedgehog (SHH), which plays important roles in molecular modulation of various fibrotic processes, and its immediate effector GLI1 in pancreatic tissues were positively correlated to the degree of cerulein-induced fibrosis. Such up-regulation of SHH signaling was restrained in rhein-treated CP mice. In cultured PSCs, we demonstrated that the expression levels of TGF-β-stimulated fibrogenic markers including α-SMA, FN1 and COL I-α1 as well as SHH were all notably suppressed by the application of rhein at 10 μM. The present study firstly reported that rhein attenuates PSC activation and suppresses SHH/GLI1 signaling in pancreatic fibrosis. With strong anti-fibrotic effects provided, rhein can be a potential remedy for fibrotic and/or PSC-related pathologies in the pancreas.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge