Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cerebral Blood Flow and Metabolism 1990-Mar

Stability of brain intracellular lactate and 31P-metabolite levels at reduced intracellular pH during prolonged hypercapnia in rats.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Y Cohen
L H Chang
L Litt
F Kim
J W Severinghaus
P R Weinstein
R L Davis
I Germano
T L James

Palavras-chave

Resumo

The tolerance of low intracellular pH (pHi) was examined in vivo in rats by imposing severe, prolonged respiratory acidosis. Rats were intubated and ventilated for 10 min with 20% CO2, for 75 min with 50% CO2, and for 10 min with 20% CO2. The maximum PaCO2 was 320 mm Hg. Cerebral intracellular lactate, pHi, and high-energy phosphate metabolites were monitored in vivo with 31P and 1H nuclear magnetic resonance (NMR) spectroscopy, using a 4.7-T horizontal instrument. Within 6 min after the administration of 50% CO2, pHi fell by 0.57 +/- 0.03 unit, phosphocreatine decreased by approximately 20%, and Pi increased by approximately 100%. These values were stable throughout the remainder of the hypercapnic period. Cerebral intracellular lactate, visible with 1H NMR spectroscopy in the hyperoxic state, decreased during hypercapnia, suggesting either a favorable change in oxygen availability (decreased lactate production) or an increase in lactate clearance or both. All hypercapnic animals awakened and behaved normally after CO2 was discontinued. Histological examination of cortical and hippocampal areas, prepared using a hematoxylin and eosin stain, showed no areas of necrosis and no glial infiltrates. However, isolated, scattered, dark-staining, shrunken neurons were detected both in control animals (no exposure to hypercapnia) and in animals that had been hypercapnic. This subtle histological change could represent an artifact resulting from imperfect perfusion-fixation, or it could represent subtle neurologic injury during the hypercapnia protocol. In summary, extreme hypercapnia and low pHi (approximately 6.5) are well tolerated in rats for periods up to 75 min if adequate oxygenation is maintained.(ABSTRACT TRUNCATED AT 250 WORDS)

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge