Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analyst, The 2013-Nov

Structural evaluation of GM1-related carbohydrate-cholera toxin interactions through surface plasmon resonance kinetic analysis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Jeong Hyun Seo
Chang Sup Kim
Hyung Joon Cha

Palavras-chave

Resumo

Surface plasmon resonance (SPR) can provide kinetic information about an interaction, and it can also be used to rapidly monitor dynamic processes, such as adsorption and degradation, without the need for sample labeling. Here, we employed SPR to analyze carbohydrate-protein interactions, particularly GM1-related carbohydrate-Vibrio cholera toxin interactions. The interaction between cholera toxin subunits A (ctxA) and B (ctxB) was similar to general ligand-receptor interactions. After the direct immobilization of thiol-containing GM1 pentasaccharide on a gold surface, the GM1-ctxB interaction kinetics were evaluated, and they showed a similar degree of kinetics as reported in previous reports. We found that ctxA had a high affinity for the GM1-ctxAB complex, although its equilibrium dissociation constant was 10 times lower than that of GM1-ctxB binding. Comparative analyses of GM1-related carbohydrate-ctxAB interactions were also conducted to determine the kinetic values of several GM1 analogues with different structures, although their kinetic values were one order of magnitude lower than those of the GM1-ctxAB interaction. The kinetic analysis results for the interactions of GM1 analogues and ctxAB indicated that the sialic acid thumb is important for recognition, and the terminal galactose and N-acetylgalactosamine fingers are required to stabilize the GM1-ctxAB interaction. Taken together, our results indicate that the direct immobilization of carbohydrate in an SPR-based analytical system can be used to evaluate the structural contribution of carbohydrate moieties in carbohydrate-protein interactions, as well as provide valuable information that can be used to understand the interactions.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge