Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant-Microbe Interactions 2005-Jan

Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Aurélie André
Mickaël Maucourt
Annick Moing
Dominique Rolin
Joël Renaudin

Palavras-chave

Resumo

We have shown previously that the glucose PTS (phosphotransferase system) permease enzyme II of Spiroplasma citri is split into two distinct polypeptides, which are encoded by two separate genes, crr and ptsG. A S. citri mutant was obtained by disruption of ptsG through homologous recombination and was proved unable to import glucose. The ptsG mutant (GII3-glc1) was transmitted to periwinkle (Catharanthus roseus) plants through injection to the leaf-hopper vector. In contrast to the previously characterized fructose operon mutant GMT 553, which was found virtually nonpathogenic, the ptsG mutant GII3-glc1 induced severe symptoms similar to those induced by the wild-type strain GII-3. These results, indicating that fructose and glucose utilization were not equally involved in pathogenicity, were consistent with biochemical data showing that, in the presence of both sugars, S. citri used fructose preferentially. Proton nuclear magnetic resonance analyses of carbohydrates in plant extracts revealed the accumulation of soluble sugars, particularly glucose, in plants infected by S. citri GII-3 or GII3-glc1 but not in those infected by GMT 553. From these data, a hypothetical model was proposed to establish the relationship between fructose utilization by the spiroplasmas present in the phloem sieve tubes and glucose accumulation in the leaves of S. citri infected plants.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge