Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2018-May

Suppression of lung inflammation by the methanol extract of Spilanthes acmella Murray is related to differential regulation of NF-κB and Nrf2.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Kyun Ha Kim
Eun Jung Kim
Min Jung Kwun
Ji Yeon Lee
Tran The Bach
Sang Mi Eum
Jun Yong Choi
Sayeon Cho
Sang-Jun Kim
Seung-Il Jeong

Palavras-chave

Resumo

BACKGROUND

Although Spilanthes acmella has been used to relieve inflammation, fever, pain, or infection in traditional Asian medicine, experimental evidence supporting these functions is scarce. Here, we examined an anti-inflammatory function and a possible underlying mechanism of S. acmella Murray (SAM).

METHODS

The methanol extract of SAM was fingerprinted by HPLC. C57BL/6 mice were administered with a single intratracheal (i.t.) LPS and 2 h later with a single i.t. SAM. The effect of SAM on lung inflammation was assessed by histology, semi-quantitative RT-PCR, and MPO assay of lung tissue. The effects of SAM on a pro-inflammatory factor NF-κB and an anti-inflammatory factor Nrf2 were analyzed by immunoblotting of nuclear proteins and by semi-quantitative RT-PCR analysis of mRNA of the genes governed by these transcription factors. V5-Nrf2 was precipitated by an anti-V5 antibody and the ubiquitinated V5-Nrf2 was revealed by immunoblotting of HA-tagged ubiquitin.

RESULTS

The i.t. SAM robustly diminished a neutrophilic lung inflammation induced by i.t. LPS treatment of mice. In RAW 264.7 cells, SAM suppressed the nuclear localization of NF-κB and the expression of NF-κB-dependent cytokine genes. SAM increased the level of Nrf2 in the nucleus and the expression of Nrf2-dependent genes while suppressing ubiquitination of Nrf2.

CONCLUSIONS

Our results suggest that SAM can suppress a neutrophilic inflammation in mouse lungs, which is associated with suppressed NF-κB and activated Nrf2. Our results provide experimental evidence supporting the anti-inflammatory function of S. acmella.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge