Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Medicinal Chemistry 2019-Apr

Synthesis and biological evaluation of anthraquinone derivatives as allosteric phosphoglycerate mutase 1 inhibitors for cancer treatment.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Ke Huang
Lulu Jiang
Ronghui Liang
Huiti Li
Xiaoxue Ruan
Changliang Shan
Deyong Ye
Lu Zhou

Palavras-chave

Resumo

Phosphoglycerate mutase 1 (PGAM1) coordinates glycolysis, pentose phosphate pathway, and serine synthesis to promote tumor growth through the regulation of its substrate 3-phosphoglycerate (3 PG) and product 2-phosphoglycerate (2 PG). Herein, based on our previously reported PGAM1 inhibitor PGMI-004A, we have developed anthraquinone derivatives as novel allosteric PGAM1 inhibitors and the structure-activity relationship (SAR) was investigated. In addition, we determined the co-crystal structure of PGAM1 and the inhibitor 8g, demonstrating that the inhibitor was located at a novel allosteric site. Among the derivatives, compound 8t was selected for further study, with IC50 values of 0.25 and approximately 5 μM in enzymatic and cell-based assays, respectively. Mechanistically, compound 8t reduced the glycolysis and oxygen consumption rate in cancer cells, which led to decreased adenosine 5'-triphosphate (ATP) production and subsequent 5' adenosine monophosphate-activated protein kinase (AMPK) activation. The inhibitor 8t also exhibited good efficacy in delaying tumor growth in H1299 xenograft model without obvious toxicity. Taken together, this proof-of-principle work further validates PGAM1 as a potential target for cancer therapy and provides useful information on anti-tumor drug discovery targeting PGAM1.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge