Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Shock 2018-Jun

The Lncrna, H19 Mediates the Protective Effect of Hypoxia Postconditioning Against Hypoxia-Reoxygenation Injury to Senescent Cardiomyocytes by Targeting MicroRNA-29b-3p.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Xuan Zhang
Long Cheng
Longhe Xu
Yunliang Zhang
Yitian Yang
Qiang Fu
Weidong Mi
Hao Li

Palavras-chave

Resumo

BACKGROUND

Ischemic postconditioning (I/Post) is an endogenous protection mechanism that reduces injury induced by ischemia-reperfusion (I/R). It remains controversial whether I/Post protects against I/R injury to the aging heart. The long non-coding RNA, H19 protects H9c2 cells against hypoxia-induced injury. This study aimed to elucidate the role of H19 in the hypoxic postconditioning (H/Post) of aged cardiomyocytes.

METHODS

Senescence induced by D-galactose in primary cardiomyocytes from neonatal Sprague-Dawley rats was measured by senescence-associated β-galactosidase staining. Hypoxic injury was evaluated by cell viability and apoptosis assays. H19 expression before and after hypoxia-reoxygenation (H/R) and H/Post was evaluated by real-time polymerase chain reactions. miR-29b-3p-binding sites in H19 and the cellular inhibitor of apoptosis protein 1 (cIAP1) were predicted by bioinformatics analysis, and interaction was verified by luciferase assay. The effects of altered H19, miR-29b-3p and cIAP1 expression on the viability and apoptosis of senescent cardiomyocytes following H/Post were determined.

RESULTS

H/Post prevented H/R injury in normal but not senescent cardiomyocytes. H19 expression was remarkably down-regulated after H/Post in senescent compared with normal cardiomyocytes. Small interfering RNA-mediated knockdown of H19 in senescent cardiomyocytes increased H/Post-induced injury. miR-29b-3p was regulated by H19 and led to a greater injury. miR-29b-3p directly targeted the 3'-untranslated region of cIAP1 and suppressed its expression. Furthermore, knockdown of cIAP1 damaged senescent cardiomyocytes following H/Post.

CONCLUSIONS

These findings suggest that H19 mediated the antiapoptotic effect of H/Post against H/R-induced injury to aged cardiomyocytes by inhibiting miR-29b-3p expression.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge