Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 2010-Apr

The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Yan-Lin Zhang
Yong-Jun Cao
Xia Zhang
Hui-Hui Liu
Tong Tong
Guo-Dong Xiao
Ya-Ping Yang
Chun-Feng Liu

Palavras-chave

Resumo

Oxidized low-density lipoprotein (ox-LDL) is involved in the pathogenesis of atherosclerosis and atherosclerotic plaque rupture by promoting lipid accumulation, proinflammatory responses, and cell death. LDL is mainly oxidized in the subendothelial layer of the vascular wall and then can be taken up by vascular endothelial cells. However, little is known about the intracellular processing of the damaged LDL. Previous studies found that autophagy is involved in degrading oxidized proteins under oxidative stress conditions in Arabidopsis thaliana, while ox-LDL can activate autophagy in EA.hy926 endothelial cells, suggesting a possible role of autophagy in the degradation of ox-LDL by endothelial cells. The present study showed that ox-LDL aggregated in human umbilical vein endothelial cells (HUVECs) and brought about an increase in the formation of autophagosomes and autolysosomes. Ox-LDL-induced increase in the autophagic level was blocked by treatment with the autophagy inhibitor 3-methyladenine and increased by the autophagy inducer rapamycin, while the aggregation of Dil-labled ox-LDL was increased by 3-methyladenine and decreased by rapamycin. In addition, Dil-labeled ox-LDL colocalized with the autophagy marker MDC, microtubule-associated protein light chain 3 (MAP1-LC3), and lysosome-associated membrane protein 2a (lamp2a). HUVECs treated with Dil-labeled-ox-LDL showed a much greater degree of overlap of MAP1-LC3 and Lamp2a than control. The results suggest that ox-LDL activates the autophagic lysosome pathway in HUVECs through the LC3/beclin1 pathway, leading to the degradation of ox-LDL.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge