Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2015-Sep

The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.).

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Junxu Xu
Manrong Zha
Ye Li
Yanfeng Ding
Lin Chen
Chengqiang Ding
Shaohua Wang

Palavras-chave

Resumo

CONCLUSIONS

Nitrogen availability and cytokinin could promote shoot branching in rice, whereas auxin and strigolactone inhibited it. The interaction between nitrogen availability and the three hormones is discussed. Rice shoot branching is strongly affected by nitrogen availability and the plant hormones auxin, cytokinin, and strigolactone; however, the interaction of them in the regulation of rice shoot branching remains a subject of debate. In the present study, nitrogen and the three hormones were used to regulate rice tiller bud growth in the indica rice variety Yangdao 6. Both nitrogen and CK promoted shoot branching in rice, whereas auxin and SL inhibited it. We used HPLC to determine the amounts of endogenous IAA and CK, and we used quantitative real-time PCR analysis to quantify the expression levels of several genes. Nitrogen enhanced the amount of CK by promoting the expression levels of OsIPTs in nodes. In addition, both nitrogen and CK downregulated the expression of genes related to SL synthesis in root and nodes, implying that the inhibition of SL synthesis by nitrogen may occur at least partially through the CK pathway. SL did not significantly reduce the amount of CK or the expression levels of OsIPT genes, but it did significantly reduce the amount of auxin and the auxin transport capacity in nodes. Auxin itself inhibited CK synthesis and promoted SL synthesis in nodes rather than in roots. Furthermore, we found that CK and SL quickly reduced and increased the expression of FC1 in buds, respectively, implying that FC1 might be a common target for the CK and SL pathways. Nitrogen and auxin delayed expression change patterns of FC1, potentially by changing the downstream signals for CK and SL.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge