Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemist 2012-Jun

The making of a muscle.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Marta Fiorotto

Palavras-chave

Resumo

The skeletal musculature is usually thought of as the primary organ of locomotion, and, like the tyres of a high-performance racing car, their composition, design, preparation and plasticity can make the difference between winner and 'wannabe'. The similarities do not end there, however. Their primary components (cells of the mesodermal layer in the embryo and latex from the rubber tree) begin their existence in locations that can be quite distant from their final point of use and in forms that bear no resemblance to the final product. Their differentiation from primary material to final product entails extensive processing, and the integration of other materials and structures are essential to ensure their function. A fundamental difference, however, is that, in the case of muscle, once the embryo is formed, the progression from relatively undifferentiated mesodermal cells to the final structures is on autopilot, provided there are no contextual aberrations either from genetic or environmental causes. Our current understanding of how muscles develop is a synthesis of observations made on a wide array of organisms, including nematode worms, fruitflies, fish, frogs, birds and various mammals, as well as from the in vitro study of cells isolated from these species. The study of myogenesis in mammals, although less amenable to experimental manipulation, has been facilitated by the recent advances in mouse genetic engineering which has enabled the function of individual genes and cell types to be investigated, as well as the lineage of cells to be traced back to their origin. In this rapid trek through the life of a muscle, how the production of a mature functional muscle from its early inception is orchestrated will be outlined in exceedingly broad strokes so as to convey the wide range of processes that must be engaged in order to generate a functional muscle. Hopefully, enough information will be provided to encourage those interested to explore further.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge