Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2017-Oct

The osmotin of Calotropis procera latex is not expressed in laticifer-free cultivated callus and under salt stress.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Isabel C C Souza
Márcio V Ramos
José H Costa
Cleverson D T Freitas
Raquel S B Oliveira
Frederico B Moreno
Renato A Moreira
Cristina P S Carvalho

Palavras-chave

Resumo

The latex of Calotropis procera has previously been reported to contain osmotin. This protein (CpOsm) inhibited phytopathogens and this was mechanistically characterized. Here, the time-course profile of CpOsm transcripts was examined in the salt-stressed cultivated callus of C. procera in order to better understand its role in the physiology of the plant. Stressed callus (80 mM NaCl) showed an unbalanced content of organic compounds (proline and total soluble sugar) and inorganic ions (Na+, Cl-, and K+). Under salt treatment, the transcripts of CpOsm were detected after 12 h and slightly increased to a maximum at day seven, followed by reduction. Interestingly, CpOsm was not detected in the soluble protein fraction recovered from the salt-stressed callus as probed by electrophoresis, dot/Western blotting and mass spectrometry. The results suggested that (1) CpOsm is not constitutive in cultivated cells (laticifer-free tissues); (2) CpOsm transcripts appear under salt-stressed conditions; (3) the absence of CpOsm in the protein fractions of stressed cultivated cells indicated that salt-induced transcripts were not used for protein synthesis and this accounts to the belief that CpOsm may be a true laticifer protein in C. procera. More effort will be needed to unveil this process. In this study we show evidences that CpOsm gene is responsive to salt stress. However the corresponding protein is not produced in cultivated cells. Therefore, presently the hypothesis that CpOsm is involved in abiotic stress is not fully supported.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge