Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports

The pathobiochemical role of the dystrophin-dystroglycan complex and the Ca2+-handling apparatus in diabetes-related muscle weakness (Review).

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Claire Mulvey
Edel Mullen
Kay Ohlendieck

Palavras-chave

Resumo

Serious diabetic complications affect millions of patients worldwide. Skeletal muscle represents the largest insulin-regulated glucose sink in the body, making insulin resistance and abnormal glucose disposal in muscle fibres a critical aspect of diabetes mellitus. Advances in the biomedical analysis of the molecular mechanisms underlying diabetic complications rely heavily on the study of suitable disease models. The Goto-Kakizaki (GK) rat is an established animal model of non-obese type 2 diabetes. This review discusses the recent finding that expression of the dystrophin-dystroglycan complex is drastically altered in diabetic GK skeletal muscle fibres. In normal muscle, the dystrophin-glycoprotein complex provides a stabilizing connection between the actin membrane cytoskeleton and the extracellular matrix component laminin. A reduction in dystrophin-associated proteins may be associated with a weakening of the fibre periphery, abnormal sarcolemmal signaling and/or a decreased cytoprotective mechanism in diabetic skeletal muscle. Stimulation by insulin might be altered due to impaired linkage between the dystrophin-anchored actin cytoskeleton and the intracellular pool of essential glucose transporters. The diminished recruitment of GLUT4 transporter molecules to the sarcolemma may be a key step in the development of insulin resistance in diabetic skeletal muscles. Thus, analogous to certain forms of muscular dystrophy, altered dystrophin levels may have pathological effects in type 2 diabetes. In contrast, the dystrophin-glycoprotein complex does not appear to be altered in diabetic cardiac muscle. However, reduced expression of the sarcoplasmic reticulum Ca2+-ATPase isoform SERCA2 is characteristic of cardiac abnormalities in type 2 diabetes. Reduced Ca2+ removal from the sarcoplasm may be associated with impaired relaxation kinetics, and could therefore play a pathophysiological role in diabetic cardiomyopathy. Here, the potential impact of these molecular alterations in diabetic muscle tissues is discussed and critically examined with respect to the future design of alternative treatment strategies to counteract diabetes-associated muscle weakness.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge