Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Microbiology and Biotechnology 2016-Oct

Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Hsi-Ho Chiu
Yin-Cheng Hsieh
Ya-Huei Chen
Hsin-Ying Wang
Chia-Yu Lu
Chun-Jung Chen
Yaw-Kuen Li

Palavras-chave

Resumo

Glycosyltransferase-1 from Bacillus cereus (BcGT1) catalyzes a reaction that transfers a glucosyl moiety to flavonoids, such as quercetin, kaempferol, and myricetin. The enzymatic glucosidation shows a broad substrate specificity when the reaction is catalyzed by wild-type BcGT1. Preliminary assays demonstrated that the F240A mutant significantly improves the regioselectivity of enzymatic glucosidation toward quercetin. To unveil and further to control the catalytic function of BcGT1, mutation of F240 to other amino acids, such as C, E, G, R, Y, W, and K, was performed. Among these mutants, F240A, F240G, F240R, and F240K greatly altered the regioselectivity. The quercetin-3-O-glucoside, instead of quercetin-7-O-glucoside as for the wild-type enzyme, was obtained as the major product. Among these mutants, F240R showed nearly 100 % product specificity but only retained 25 % catalytic efficiency of wild-type enzyme. From an inspection of the protein structure, we found two other amino acids, F132 and F138, together with F240, are likely to form a hydrophobic binding region, which is sufficiently spacious to accommodate substrates with varied aromatic moieties. Through the replacement of a phenylalanine by a tyrosine residue in the substrate-binding region, the mutants may be able to fix the orientation of flavonoids, presumably through the formation of a hydrogen bond between substrates and mutants. Multiple mutants-F240R_F132Y, F240R_F138Y, and F240R_F132Y_F138Y-were thus constructed for further investigation. The multiple points of mutants not only maintained the high product specificity but also significantly improved the catalytic efficiency, relative to F240R. The same product specificity was obtained when kaempferol and myricetin were used as a substrate.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge