Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Archives of Allergy and Immunology 2010

Toll-like receptor-9 agonist inhibits airway inflammation, remodeling and hyperreactivity in mice exposed to chronic environmental tobacco smoke and allergen.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Dae Jin Song
Myung Goo Min
Marina Miller
Jae Youn Cho
Hye Yung Yum
David H Broide

Palavras-chave

Resumo

BACKGROUND

As passive environmental tobacco smoke (ETS) exposure in nonsmokers can increase both asthma symptoms and the frequency of asthma exacerbations, we utilized a mouse model, in which ovalbumin (OVA) + ETS induce significantly increased levels of eosinophilic airway inflammation and remodeling compared to either stimulus alone, to determine whether a Toll-like receptor-9 (TLR-9) agonist could reduce levels of airway inflammation, airway remodeling and airway hyperreactivity (AHR).

METHODS

Mice treated with or without a TLR-9 agonist were sensitized to OVA and challenged with OVA + ETS for 1 month. AHR to methacholine was assessed in intubated and ventilated mice. Lung Th2 cytokines and TGF-beta(1) were measured by ELISA. Lungs were processed for histology and immunohistology to quantify eosinophils, mucus, peribronchial fibrosis and smooth muscle changes using image analysis.

RESULTS

Administration of a TLR-9 agonist to mice coexposed to chronic ETS and chronic OVA allergen significantly reduced levels of eosinophilic airway inflammation, mucus production, peribronchial fibrosis, the thickness of the peribronchial smooth muscle layer, and AHR. The reduced airway remodeling in mice treated with the TLR-9 agonist was associated with significantly reduced numbers of peribronchial MBP+ and peribronchial TGF-beta(1)+ cells, and with significantly reduced levels of lung Th2 cytokines [interleukin-5 and interleukin-13] and TGF-beta(1).

CONCLUSIONS

These studies demonstrate that TLR-9-based therapies inhibit airway inflammation, remodeling and AHR in mice coexposed to ETS and allergen who exhibit enhanced airway inflammation and remodeling.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge