Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science & Technology 2013-Oct

Toward a "molecular thermometer" to estimate the charring temperature of wildland charcoals derived from different biomass sources.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Maximilian P W Schneider
Lacey A Pyle
Kenneth L Clark
William C Hockaday
Caroline A Masiello
Michael W I Schmidt

Palavras-chave

Resumo

The maximum temperature experienced by biomass during combustion has a strong effect on chemical properties of the resulting charcoal, such as sorption capacity (water and nonpolar materials) and microbial degradability. However, information about the formation temperature of natural charcoal can be difficult to obtain in ecosystems that are not instrumented prior to fires. Benzene polycarboxylic acids (BPCA) are molecular markers specific for pyrogenic carbon (PyC) which can provide information on the degree of aromatic condensation in charcoals. Here we apply the BPCA molecular marker method to a set of 10 charcoals produced during an experimental fire in a Pitch pine-scrub oak forest from litter and bark of pitch pine and inkberry plants in the Pinelands National Reserve in New Jersey, USA. We deployed temperature-sensitive crayons throughout the burn site, which recorded the maximum air temperature and made comparisons to the degree of thermal alteration recorded by BPCA molecular markers. Our results show an increase of the degree of aromatic condensation with monitored temperatures for bark biomass, while for needles no clear trend could be observed. For leaf-derived charcoals at increasing monitored fire temperatures, decreasing degree of aromatic condensation was obtained. This suggests that molecular markers can be used to roughly estimate the maximum fire temperatures experienced by bark and wood materials, but not based on leaf- and needle-derived materials. Possible applications include verifying declared pyrolysis temperatures of biochars and evaluating ecosystem fire temperature postburn.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge