Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Biotechnology Journal 2006-May

Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Young-Mi Shin
Hee-Jin Park
Sun-Duck Yim
Nam-In Baek
Choong-Hwan Lee
Gynheung An
Young-Min Woo

Palavras-chave

Resumo

Flavonoids, compounds that possess diverse health-promoting benefits, are lacking in the endosperm of rice. Therefore, to develop transgenic lines that produce flavonoids, we transformed a white rice cultivar, Oryza sativa japonica cv. Hwa-Young, with maize C1 and R-S regulatory genes. Expression of these transgenes was restricted to the endosperm using the promoter of a rice prolamin gene. The pericarp of the C1/R-S homozygous lines became dark brown in accordance with their maternal genotype, whereas the endosperm turned chalky, similar to the opaque kernel phenotype. Analysis via high-performance liquid chromatography (HPLC) revealed that numerous kinds of flavonoids were produced in these transgenic kernels. To identify individual flavonoids, the number of HPLC peaks was reduced through moderate acid hydrolysis, followed by ethyl acetate partitioning. Amongst the major flavonoids, dihydroquercetin (taxifolin), dihydroisorhamnetin (3'-O-methyl taxifolin) and 3'-O-methyl quercetin were identified through liquid chromatography/mass spectrometry/mass spectrometry and nuclear magnetic resonance analyses. Fluorescence labelling with diphenylboric acid showed that the flavonoids were highly concentrated in the cells of four to five outer endosperm layers. More importantly, a high fluorescence signal was present in the cytosol of the inner endosperm layers. However, the overall signal in the inner layers was significantly lower because starch granules and protein bodies occupied most of the cytosolic space. Our estimate of the total flavonoid content in the transgenic kernels suggests that C1/R-S rice has the potential to be developed further as a novel variety that can produce various flavonoids in its endosperm.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge