Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Bacteriology 2016-Jan

Trk2 Potassium Transport System in Streptococcus mutans and Its Role in Potassium Homeostasis, Biofilm Formation, and Stress Tolerance.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Gursonika Binepal
Kamal Gill
Paula Crowley
Martha Cordova
L Jeannine Brady
Dilani B Senadheera
Dennis G Cvitkovitch

Palavras-chave

Resumo

Potassium (K(+)) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K(+) and a variety of K(+) transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K(+) acquisition in Streptococcus mutans and the importance of K(+) homeostasis for its virulence attributes. The S. mutans genome harbors four putative K(+) transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K(+) cotransporter (GlnQHMP), and a channel-like K(+) transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K(+)] less than 5 mM eliminated biofilm formation in S. mutans. The functionality of the Trk2 system was confirmed by complementing an Escherichia coli TK2420 mutant strain, which resulted in significant K(+) accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K(+)-dependent cellular response of S. mutans to environment stresses.

OBJECTIVE

Biofilm formation and stress tolerance are important virulence properties of caries-causing Streptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment of S. mutans. K(+) is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K(+) transporters in S. mutans. We identified the most important system for K(+) homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K(+) for the activity of biofilm-forming enzymes, which explains why such high levels of K(+) would favor biofilm formation.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge